計算物理

計算物理学の講義資料

20 05, 2020

1.5. 1D Array

2020-07-01T15:18:23+09:00Pythonの基礎|

 pythonの標準ライブラリー(python本体)には配列を扱うlistが用意されている。普通のアプリを作成する場合にはよく使うのだが、科学技術計算に使うためには、計算の利便性と高速化の面でlistは適さない。数値計算、科学技術計算用では、NumPyに用意されているndarrayというdata typeの配列が広く使われている。このndarrayは、行列、ベクトル計算用の高速アルゴリズムに最適化されていて、NumPyやSciPyで提供されるさまざまなfuntionが利用できる。さらにはデータ解析モジュールのPandasや機械学習モジュールのscikit-learnでもndarrayが使われているのでデータサイエンスでは必須の配列である。

20 05, 2020

1.4. NumPy/SciPy

2020-07-06T11:57:42+09:00Pythonの基礎|

python本体(標準ライブラリー)には、数学/物理に使える関数はほぼ何も定義されていないので、python本体だけでは数値計算はできない。一般的にコードを書くときにはpython本体だけでなく、さまざまなモジュール(module)を必要に応じて追加(インポート, import)していくことになる。数値計算では、NumPyという非常に強力な数値計算モジュールが用意されていて、数学で使える基本的な関数はほんどすべて揃っている。今後講義でコードを書くときは、ほぼ100%、NumPyを使うことになるし、pythonを使っている科学技術計算、機械学習を含むデータサイエンスでは常にNumPyを用いていると思っていい。それほど重要なモジュールである。

18 05, 2020

1.2. Variables

2020-07-01T15:18:02+09:00Pythonの基礎|

 コードの中で、変数名 = 値 と書くと、メモリのどこかに「値」というデータが「変数名」(Variable)という名前がつけられて保存される。「変数」や「値」のこと(*や/などの演算子以外のもの)をコンピューターの用語でOperand(オペランド)という。なおpythonではどんな環境でもエラーメッセージは英語で表示されるので、プログラミングの基本英単語も覚える必要がある。本講義でも適宜英語を併記する。

18 05, 2020

1.1. AnacondaとJupyterLab

2020-07-01T15:17:55+09:00Pythonの基礎|

最初にプログラミング環境を整える必要がある。webアプリやスマホアプリ、デスクトップアプリを作りたい人、他の言語に慣れている人などは、pythonの公式www.python.org からpythonをダウンロードして自分で環境を整えるのもいいし、有料無料の各種統合開発環境(Visual Studio, VS Code, PyCharm等)をインストールするのもいいだろう。ただし、本講義のように数値計算やデータサイエンスのみをターゲットにする場合は、Anacondcaというディストリビューションで環境を構築するのがお手軽なので、本講義ではAnacondaを使って環境を構築する。

Go to Top