Quantum energy teleportation (QET) is, from the operational viewpoint of distant protocol users, energy transportation via local operations and classical communication. QET has various links to fundamental research fields including black-hole physics, the quantum theory of Maxwell’s demon, and quantum entanglement in condensed-matter physics. However, the energy that has been extracted using a previous QET protocol is limited by the distance between two protocol users; the upper bound of the energy being inversely proportional to the distance. In this paper, we prove that introducing squeezed vacuum states with local vacuum regions between the two protocol users overcomes this limitation, allowing energy teleportation over practical distances.

Feature articles: